yabs.io

Yet Another Bookmarks Service

Viewing weinreich's Bookmarks

qualitative delete ,

[https://www.academia.edu/36897806/Sample_size_for_qualitative_research_The_risk_of_missing_something_important] - - public:weinreich
qualitative, research - 2 | id:1222012 -

Until the definitive answer is provided, perhaps an N of 30 respondents is a reasonable starting point fordeciding the qualitative sample size that can reveal the full range (or nearly the full range) of potentially important customer perceptions. An N of 30 reduces the probability of missing a perception with a 10percent-incidence to less than 5 percent (assuming random sampling), and it is the upper end of the rangefound by Griffin and Hauser. If the budget is limited, we might reduce the N below 30, but the client mustunderstand the increased risks of missing perceptions that may be worth knowing. If the stakes and budgetare high enough, we might go with a larger sample in order to ensure that smaller (or harder to reach)subgroups are still likely to be represented.

[https://www.researchnewslive.com.au/2022/05/24/the-question-researchers-should-all-stop-asking/] - - public:weinreich
qualitative, research - 2 | id:1119095 -

We want to take the shortcut and ask the why question, but please, resist the urge. Reframe it and you’ll find you are getting a more honest answer that is closer to authentic truth.

[https://medium.com/@emmaboulton/research-methods-for-discovery-5c7623f1b2fb] - - public:weinreich
design, qualitative, research - 3 | id:1074484 -

Whilst you’re shaping the problem space and then during the first diamond of understanding and defining which user needs to focus on, you should ideally get out of the lab or the office. When you have defined your solution and are iterating on it, that’s the best time to use your go to method — lab usability testing in a lot of cases, remote interviewing is mine. This is because you are likely needing cycles of quick feedback and iteration so you need a tried and trusted method so you can spin up a sprint of research quickly and efficiently. So how about when time and efficiency isn’t quite so important and the quality and depth of understanding or engagement of stakeholders are the key drivers? Here are some examples from my toolkit:

[https://www.nngroup.com/articles/interview-sample-size/?utm_source=Alertbox&utm_campaign=48f62e824a-EMAIL_CAMPAIGN_2020_11_12_08_52_COPY_01&utm_medium=email&utm_term=0_7f29a2b335-48f62e824a-24361717] - - public:weinreich
design, qualitative, research - 3 | id:958261 -

How many interviews are enough depends on when you reach saturation, which, in turn, depends on your research goals and the people you’re studying. To avoid doing more interviews than you need, start small and analyze as you go, so you can stop once you’re no longer learning anything new.

[https://infodemiology.jmir.org/2021/1/e30971] - - public:weinreich
health_communication, qualitative, research, social_media - 4 | id:744667 -

Objective: In this work, we aimed to develop a practical, structured approach to identify narratives in public online conversations on social media platforms where concerns or confusion exist or where narratives are gaining traction, thus providing actionable data to help the WHO prioritize its response efforts to address the COVID-19 infodemic. Methods: We developed a taxonomy to filter global public conversations in English and French related to COVID-19 on social media into 5 categories with 35 subcategories. The taxonomy and its implementation were validated for retrieval precision and recall, and they were reviewed and adapted as language about the pandemic in online conversations changed over time. The aggregated data for each subcategory were analyzed on a weekly basis by volume, velocity, and presence of questions to detect signals of information voids with potential for confusion or where mis- or disinformation may thrive. A human analyst reviewed and identified potential information voids and sources of confusion, and quantitative data were used to provide insights on emerging narratives, influencers, and public reactions to COVID-19–related topics. Results: A COVID-19 public health social listening taxonomy was developed, validated, and applied to filter relevant content for more focused analysis. A weekly analysis of public online conversations since March 23, 2020, enabled quantification of shifting interests in public health–related topics concerning the pandemic, and the analysis demonstrated recurring voids of verified health information. This approach therefore focuses on the detection of infodemic signals to generate actionable insights to rapidly inform decision-making for a more targeted and adaptive response, including risk communication.

[https://cbail.github.io/textasdata/Text_as_Data.html?fbclid=IwAR1Nl93wTvZlhmVdifK_-I91viDfkH1R69rGwSzE2wM__OOVT_w3mJatgvI] - - public:weinreich
how_to, qualitative, quantitative, research, social_media, twitter - 6 | id:309754 -

This class covers a range of different topics that build on top of each other. For example, in the first tutorial, you will learn how to collect data from Twitter, and in subsequent tutorials you will learn how to analyze those data using automated text analysis techniques. For this reason, you may find it difficult to jump towards one of the most advanced issues before covering the basics. Introduction: Strengths and Weaknesses of Text as Data Application Programming Interfaces Screen-Scraping Basic Text Analysis Dictionary-Based Text Analysis Topic Modeling Text Networks Word Embeddings

[https://www.fsnnetwork.org/behavior-bank] - - public:weinreich
behavior_change, nutrition, qualitative, research - 4 | id:293007 -

The Food Security and Nutrition Network Behavior Bank features results from Barrier Analysis and Doer/NonDoer Studies conducted by food security and other practitioners globally. (Click here for a description of Barrier Analysis.) You can browse the database by country, region, and behavior studied to look for results for a particular area/behavior, or to look for patterns of barrier and enablers for a particular behavior or set of behaviors.

[https://www.nngroup.com/articles/usability-testing-101/?utm_source=Alertbox&utm_campaign=efe6ce0f84-UsabilityTesting_ServiceBlueprint_20191202&utm_medium=email&utm_term=0_7f29a2b335-efe6ce0f84-24361717] - - public:weinreich
design, product, qualitative, research - 4 | id:272148 -

With marked bookmarks
| (+) | |

Viewing 1 - 50, 50 links out of 136 links, page: 1

Follow Tags

Manage

Export:

JSONXMLRSS